3.159 \(\int \frac{d+e x^2}{\sqrt{a-c x^4}} \, dx\)

Optimal. Leaf size=124 \[ \frac{a^{3/4} \sqrt{1-\frac{c x^4}{a}} \left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right ) \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),-1\right )}{c^{3/4} \sqrt{a-c x^4}}+\frac{a^{3/4} e \sqrt{1-\frac{c x^4}{a}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt{a-c x^4}} \]

[Out]

(a^(3/4)*e*Sqrt[1 - (c*x^4)/a]*EllipticE[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a - c*x^4]) + (a^(3/4
)*((Sqrt[c]*d)/Sqrt[a] - e)*Sqrt[1 - (c*x^4)/a]*EllipticF[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a -
c*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.0888635, antiderivative size = 124, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1201, 224, 221, 1200, 1199, 424} \[ \frac{a^{3/4} \sqrt{1-\frac{c x^4}{a}} \left (\frac{\sqrt{c} d}{\sqrt{a}}-e\right ) F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt{a-c x^4}}+\frac{a^{3/4} e \sqrt{1-\frac{c x^4}{a}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt{a-c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a - c*x^4],x]

[Out]

(a^(3/4)*e*Sqrt[1 - (c*x^4)/a]*EllipticE[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a - c*x^4]) + (a^(3/4
)*((Sqrt[c]*d)/Sqrt[a] - e)*Sqrt[1 - (c*x^4)/a]*EllipticF[ArcSin[(c^(1/4)*x)/a^(1/4)], -1])/(c^(3/4)*Sqrt[a -
c*x^4])

Rule 1201

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-(c/a), 2]}, Dist[(d*q - e)/q,
Int[1/Sqrt[a + c*x^4], x], x] + Dist[e/q, Int[(1 + q*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] &
& NegQ[c/a] && NeQ[c*d^2 + a*e^2, 0]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (b*x^4)/a]/Sqrt[a + b*x^4], Int[1/Sqrt[1 + (b*x^4)
/a], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] &&  !GtQ[a, 0]

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[EllipticF[ArcSin[(Rt[-b, 4]*x)/Rt[a, 4]], -1]/(Rt[a, 4]*Rt[
-b, 4]), x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]

Rule 1200

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[Sqrt[1 + (c*x^4)/a]/Sqrt[a + c*x^4], In
t[(d + e*x^2)/Sqrt[1 + (c*x^4)/a], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] &&
!GtQ[a, 0]

Rule 1199

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Dist[d/Sqrt[a], Int[Sqrt[1 + (e*x^2)/d]/Sqrt
[1 - (e*x^2)/d], x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && EqQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rubi steps

\begin{align*} \int \frac{d+e x^2}{\sqrt{a-c x^4}} \, dx &=\frac{\left (\sqrt{a} e\right ) \int \frac{1+\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{a-c x^4}} \, dx}{\sqrt{c}}+\left (d-\frac{\sqrt{a} e}{\sqrt{c}}\right ) \int \frac{1}{\sqrt{a-c x^4}} \, dx\\ &=\frac{\left (\sqrt{a} e \sqrt{1-\frac{c x^4}{a}}\right ) \int \frac{1+\frac{\sqrt{c} x^2}{\sqrt{a}}}{\sqrt{1-\frac{c x^4}{a}}} \, dx}{\sqrt{c} \sqrt{a-c x^4}}+\frac{\left (\left (d-\frac{\sqrt{a} e}{\sqrt{c}}\right ) \sqrt{1-\frac{c x^4}{a}}\right ) \int \frac{1}{\sqrt{1-\frac{c x^4}{a}}} \, dx}{\sqrt{a-c x^4}}\\ &=\frac{\sqrt [4]{a} \left (d-\frac{\sqrt{a} e}{\sqrt{c}}\right ) \sqrt{1-\frac{c x^4}{a}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt [4]{c} \sqrt{a-c x^4}}+\frac{\left (\sqrt{a} e \sqrt{1-\frac{c x^4}{a}}\right ) \int \frac{\sqrt{1+\frac{\sqrt{c} x^2}{\sqrt{a}}}}{\sqrt{1-\frac{\sqrt{c} x^2}{\sqrt{a}}}} \, dx}{\sqrt{c} \sqrt{a-c x^4}}\\ &=\frac{a^{3/4} e \sqrt{1-\frac{c x^4}{a}} E\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{c^{3/4} \sqrt{a-c x^4}}+\frac{\sqrt [4]{a} \left (d-\frac{\sqrt{a} e}{\sqrt{c}}\right ) \sqrt{1-\frac{c x^4}{a}} F\left (\left .\sin ^{-1}\left (\frac{\sqrt [4]{c} x}{\sqrt [4]{a}}\right )\right |-1\right )}{\sqrt [4]{c} \sqrt{a-c x^4}}\\ \end{align*}

Mathematica [C]  time = 0.0312186, size = 77, normalized size = 0.62 \[ \frac{\sqrt{1-\frac{c x^4}{a}} \left (3 d x \, _2F_1\left (\frac{1}{4},\frac{1}{2};\frac{5}{4};\frac{c x^4}{a}\right )+e x^3 \, _2F_1\left (\frac{1}{2},\frac{3}{4};\frac{7}{4};\frac{c x^4}{a}\right )\right )}{3 \sqrt{a-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[a - c*x^4],x]

[Out]

(Sqrt[1 - (c*x^4)/a]*(3*d*x*Hypergeometric2F1[1/4, 1/2, 5/4, (c*x^4)/a] + e*x^3*Hypergeometric2F1[1/2, 3/4, 7/
4, (c*x^4)/a]))/(3*Sqrt[a - c*x^4])

________________________________________________________________________________________

Maple [A]  time = 0.05, size = 154, normalized size = 1.2 \begin{align*} -{e\sqrt{a}\sqrt{1-{{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}} \left ({\it EllipticF} \left ( x\sqrt{{\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) -{\it EllipticE} \left ( x\sqrt{{\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ) \right ){\frac{1}{\sqrt{{\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{-c{x}^{4}+a}}}{\frac{1}{\sqrt{c}}}}+{d\sqrt{1-{{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}\sqrt{1+{{x}^{2}\sqrt{c}{\frac{1}{\sqrt{a}}}}}{\it EllipticF} \left ( x\sqrt{{\sqrt{c}{\frac{1}{\sqrt{a}}}}},i \right ){\frac{1}{\sqrt{{\sqrt{c}{\frac{1}{\sqrt{a}}}}}}}{\frac{1}{\sqrt{-c{x}^{4}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(-c*x^4+a)^(1/2),x)

[Out]

-e*a^(1/2)/(1/a^(1/2)*c^(1/2))^(1/2)*(1-1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4+a
)^(1/2)/c^(1/2)*(EllipticF(x*(1/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(1/a^(1/2)*c^(1/2))^(1/2),I))+d/(1/a^(1/
2)*c^(1/2))^(1/2)*(1-1/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+1/a^(1/2)*c^(1/2)*x^2)^(1/2)/(-c*x^4+a)^(1/2)*EllipticF(x
*(1/a^(1/2)*c^(1/2))^(1/2),I)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{\sqrt{-c x^{4} + a}{\left (e x^{2} + d\right )}}{c x^{4} - a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 + a)*(e*x^2 + d)/(c*x^4 - a), x)

________________________________________________________________________________________

Sympy [A]  time = 1.70771, size = 82, normalized size = 0.66 \begin{align*} \frac{d x \Gamma \left (\frac{1}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{4}, \frac{1}{2} \\ \frac{5}{4} \end{matrix}\middle |{\frac{c x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{5}{4}\right )} + \frac{e x^{3} \Gamma \left (\frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, \frac{3}{4} \\ \frac{7}{4} \end{matrix}\middle |{\frac{c x^{4} e^{2 i \pi }}{a}} \right )}}{4 \sqrt{a} \Gamma \left (\frac{7}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(-c*x**4+a)**(1/2),x)

[Out]

d*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(2*I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + e*x**3*gamma(3/4
)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(2*I*pi)/a)/(4*sqrt(a)*gamma(7/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{2} + d}{\sqrt{-c x^{4} + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + a), x)